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Comparison of ML–EM algorithm and ART for reconstruction
of gas hold-up profile in a bubble column
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bstract

Algebraic reconstruction technique (ART) and maximum likelihood–expectation maximization (ML–EM) algorithm have been applied for image
econstruction using gamma-ray tomography. This methodology can be of immense help in establishing the hydrodynamics of several multiphase
ystems such as two-phase and three-phase bubble column reactors. The effect of various image processing parameters such as initial guess, grid
ize, stopping criteria and gamma-ray measurement parameters like beam configuration, number of projection, number of views on the quality
f reconstructed image has been studied in present work. It has been observed that ML–EM algorithm shows more precise and faster results as
ompared to ART and it serve as a preferential tool in image reconstruction. These techniques were then used in the estimation of gas hold-up

rofile in a two-phase aqueous system. Average gas hold-up values in bubble column based on reconstructed local hold-up values based on the
bove two techniques were found to be in good agreement with the experimental data within ±10% accuracy, however, ML–EM algorithm may
e preferred due to better capability of incorporating the modalities of data collection.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Facile construction, absence of moving part, low operating
ost and easy operation makes bubble columns a highly attractive
as–liquid contactor. Detailed understanding of hydrodynamics
f bubble column is needed for the design and development of
n optimized and trouble free operation of the reactor. In bubble
olumn, gas hold-up is an important hydrodynamic parameter
s the knowledge of radial as well as axial gas hold-up distribu-
ion gives rise to pressure variation resulting in a characteristic
iquid circulation in a bubble column. This intern governs the
ate of mixing, heat and mass transfer. Gas hold-up information
lso facilitates the determination of the flow regimes such as
omogeneous, transition and heterogeneous regimes.

Computed tomography (CT) is one such technique that is
apable of providing the hold-up distribution of the phases in a
ultiphase system by exploring the object from many different
irections. The impact of this technique in process tomogra-
hy has been considered to be revolutionary in troubleshoot-
ng, design and development of multiphase system. Neal and
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ankhoff [1] were the first to measure the radial hold-up pro-
les in a two-phase flow using electro resistivity probe. There-
fter, several measurement techniques have been reported using
onductivity probe, electro-resistivity probe, optical probe, hot-
lm anemometer, particle image velocimetry (PIV), ultrasonic

echniques, electrical capacitance, resistance tomography and
amma-ray attenuation techniques. Joshi et al. [2] have reviewed
hese techniques extensively in their recent publication.

Fundamentally, hold-up distribution reconstruction is a
athematical problem dealing with measured line integrals at

ifferent angles and directions in a suitable mathematical form
nd solving it [3]. The image reconstruction algorithms may be
nalytical or iterative in nature [3–5]. Analytical algorithms are
nown to be fast and generally based on transform techniques
uch as Fourier transform, Filter back projection method, Abel
ransform and so on. Their disadvantage is the need of large
umber of noiseless data uniformly distributed over 180◦ or
60◦ to produce results with a desired accuracy [6]. Also, their
ies difficulty to model the physics and statistical characteristics
f the data acquisition process [7]. Whereas, the iterative

lgorithm has good flexibility for various beam configurations.
t can precisely incorporate the model of physics and statistics
f gamma-ray tomography and the literature shows that it works
ell with noisy data and a limited number of path integrals,

mailto:bnt@udct.org
dx.doi.org/10.1016/j.cej.2006.06.015
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Nomenclature

a element of system matrix/weighted matrix
A attenuation
d distance of projection from the center of column
Dd detector aperture
HD dispersed liquid height
HL clear liquid height
I intensities of the emerging beam
Io intensities of the incident beam
lij the length of jth projection in the ith pixel
M total number of projections
n constant
N total number of pixels
p projection
p̄ projection estimated
r radial location
R radius of column
S system matrix
t thickness of absorbing medium
Xd distance of scattering event from the detector
zj the number of pixels through which jth projection

passes

Greek letters
εG gas hold-up
ε̄G column/cross-sectional average gas hold-up
εGW gas hold-up at wall
θ source angle
μ attenuation coefficient

Subscripts
a air
chodl chordal gas hold-up
i number of pixel
j number of projection
k number of iteration
l liquid
reco reconstructed value
w water/wall
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lbeit slow [8]. Dempster et al. [9] have reported the use of EM
lgorithm for solving incomplete data problems, but it was not
ntil Shepp and Vardi [10], that the EM algorithm was applied to
mission and transmission tomography. Using these techniques
xtensive research was carried out in the field of emission
omography to get faster and better image quality [11–15].
ransmission tomography such as GRT was initially used mostly
or non-distractive applications where it is possible to obtain
he complete data set and analytical methods can give faster

nd better results in such applications. Algebraic techniques
ere also applied successively for similar applications [16,17].
The present literature is bereft of the technicalities involved

n the use of ART and ML algorithm, particularly for the appli-
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ation of phase distribution in multiphase systems. Also several
mage reconstruction parameters such as; initial guess, grid size,
nd beam configuration have not been studied in detail for
L algorithm. In present study, the comparison of ART and
L algorithm has been carried out using several measurement

arameters such as beam configuration, number of views and
umber of projection. The influence of other parameters such as
nitial guess and grid size was also studied with the help of recon-
tructed distribution of the linear water attenuation coefficient
alues and gas hold-up profile.

. Gamma-ray tomography: underlying principle

Gamma-ray emitted during the radioactive decay process
enetrate through the multiphase system area and these can be
etected by the scintillation detectors placed on the opposite side
f the source. Detector catches the coincidentally emitted �-rays
nd the location of the attenuation taken place inside the volume
etween the source and the detector. The attenuation is a func-
ion of the attenuation coefficient, μ, (which in turn depends on
he energy possessed by gamma photons) and the thickness of
he absorber. It can be expressed as follow:

= −ln

(
I

Io

)
=

∫
μ dt (1)

here Io and I are the intensities of the incident and emerg-
ng beams, respectively, μ the linear attenuation coefficient, t
he thickness of the absorbing medium and A is the attenuation.
rom Eq. (1), it can be seen that the attenuation A and the atten-
ation coefficient μ are linearly related. The attenuation of the
rojection through a bubble column filled with gas, liquid and
as–liquid medium can be given by the following expressions:

n

(
Ia

Io

)
= −(μata + μw2tw) (2)

n

(
Il

Io

)
= −(μltl + μw2tw) (3)

n

(
ITP

Io

)
= −(μata + μltl + μw2tw) (4)

here Ia, Il and ITP are the intensities of the emerging beam from
ir, liquid and two-phase system, respectively; μa and μl are the
inear attenuation coefficients of air and liquid, respectively, and
a, tl and tw are the thickness of air, liquid and wall medium,
espectively.

Chordal gas hold-up of each measured projection, which is a
inear integration of the local hold-up over projection path can
e obtained using the following expression based on the above
hree equations,

chodl = ln(ITP/Il)

ln(Ia/Il)
(5)
he spatial distribution of gas hold-up can be reconstructed using
suitable reconstruction algorithm provided the spatial variation
f the chordal gas hold-up across the interested system area at
everal radial and angular locations is known.
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. Image reconstruction

Iterative methods used for the estimation of attenuation dis-
ribution, can be expressed using the following equation:

j =
N∑

i=1

ai,jμi (6)

here pj is the total attenuation measured at jth projection, N
he total number of pixels and μi is the attenuation coefficient
alue of ith pixel. ai,j is elements of system matrix or weighted
atrix given by, S = [ai,j] ∈ �M×N , which enables the iterative

econstruction method to recover resolution that was lost in the
rojections due to measurement uncertainties. Fundamentally,
terative algorithm finds the solution of Eq. (6) by successive iter-
tions. Iterations progresses based on the comparison of current
stimate with the measured projections. The iterative algorithms
ike ART and ML–EM algorithm differs in the way the mea-
ured and estimated projections are compared and the kind of
orrections applied to the current estimate. The procedure is
epeated until the estimated attenuation distribution is consistent
ith the measured projections. In short, using iterative algo-

ithm, the difference between the measured path integral hold-up
nd the calculated hold-up from reconstructed pixel values is
inimized.

.1. Geometric considerations

As source and detectors were collimated, each projection is
epresented by a line, which is at source angle θ and d distance
way from the center of column and expressed as p(d, θ), as
hown in Fig. 1. The attenuation measured at various angular
nd radial locations over the cross-section represented by a vec-
or, P, is given as [pj; j = 1, . . ., M], where M is the number of

rojections. The quantityμ(x, y) is defined as the estimated atten-
ation at any point (x, y) of the transverse slice. This unknown
uantity, μ(x, y), is assumed to be proportional to the distribu-
ion of the phases in the area of interest. The projection, p(d, θ)

Fig. 1. Schematic diagram for estimation of system matrix.
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2

3
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s the sum of the attenuations of gamma-ray energy recorded in
given time interval along the straight line between the detector
nd source.

Several methods have been studied by number of researcher
or the calculation of system matrix [18,19]. In the present work,
ystem matrix was calculated based on the geometrical position
f pixels in which the entire object was divided and the projec-
ions taken at different locations (Fig. 1). The element of system

atrix, aij can be expressed as:

ij = lij∑M
j=1lij

(7)

here lij is the length of jth projection in the ith pixel. A specific
rid size and a beam configuration represented by an identical
ystem matrix is then estimated only once in order to save com-
utational time.

.2. Selection of initial guess

In the implementation of the iterative algorithm based on
mage reconstruction, the process was initiated by arbitrarily
reating a first estimate of the spatial distribution of the atten-
ation coefficient known as initial guess. The initial guess can
e a uniform image initialized to 0 or 1 (depending on whether
he correction is carried out under the form of an addition or

ultiplication) or a distribution enclosed in the field of view.
n ML algorithm, first guess should be a positive non-zero
umber because a negative value does not make any sense
nd also because each new value is found by multiplying the
urrent values. It should be noted that any value set initially
o zero will remain zero throughout. In the present study, the
nitial guess distribution was obtained using three different
oncepts:

. An averaged back projection estimation of the unknown local
attenuation coefficient μi, in ith pixel can be written as:

μi = 1

M

M∑
j=1

pij (8)

where pij is the value of the jth projection passing through
the ith pixel.

. The minimum projection method (MPM) is a simple non-
linear modification of Eq. (8) and it can be expressed as:

μi = min(pi1, pi2, . . . , piM) (9)

. Modified back projection method preserves the total number
of counts and it is similar to the back projection estimation
method and it can be expressed as:
μi = 1

M

M∑
j=1

pij

zj

aij (10)

where zj is the number of pixels through which jth projection
passes and aij is the system matrix element.
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scanning the two-phase and the single-phase system. These data
were then used for the estimation of gas hold-up and linear water
attenuation coefficient distribution to study the behavior of ART
and ML algorithm.
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.3. Maximum likelihood–estimation maximization
ML–EM) algorithm

The ML algorithm finds the best estimate for the solution by
tting a criterion of maximization of the likelihood of recon-
tructed image. This was done by dividing each iteration of the
lgorithm in two steps: in the expectation step (E step), the for-
ula expressing the likelihood of any reconstructed image for
given measured data is formed, and in the maximization step

M step), the image that has the greatest likelihood to give the
easured data was found [20]. The log likelihood over all pro-

ections can be represented as:

n fML(P, μ)

=
∑

j

{
−cj e−

∑
i
aijμi − pj

∑
i

aijμi + pj ln cj − ln pj!

}

(11)

here cj is the total number of gamma-ray photons leaving the
ource. The derivation of expectation and maximization step
f the log-likelihood function has been described by Lange and
arson [21]. Accordingly, at every iteration, a current estimate is
sed for the estimation of projections. The measured projections
ere then compared with the estimated projections, and the ratio
etween these two was used to modify the current estimate to
roduce a more accurate updated figure, which intern becomes
he next iteration.

.4. Algebraic reconstruction technique (ART)

The ART algorithm is simply based on corrective technique.
ach projected density is thrown back across the reconstruction
pace in which the densities are iteratively modified to bring
ach reconstructed projection into agreement with the mea-
ured projection. The estimated projection is subtracted from
he measured projection and used further to estimate the accu-
ate attenuation distribution by incorporating difference between
he two in the current estimate. Mathematically, the algorithm
an be defined by the following equation [16,17]:

k+1
i = μk

i + pj − p̄j∑N
i=1aij

aij (12)

.5. Optimizing number of iterations

In the proposed iterative reconstruction method of ML–EM
lgorithm and ART, the converging rate was found to be higher
ntil certain point and thereafter the converging rate becomes
lower. An iterative method needs very large number of iterations
o completely match the reconstructed image with the actual
mage. In the case of excessively higher number of iterations,
he statistical noise gets added to the reconstructed image and the
uality of distribution deteriorates. Therefore, for a successful

mplementation of the iterative algorithm, it becomes pertinent
o use certain termination criteria to identify the optimal image
uality and stop the iterations so that the image deterioration is
voided.

F
i
t
m
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RMS (root mean square) error was estimated from the actual
nd reconstructed pixel values, given by Eq. (13). For simulated
ata, pixel values were used for RMS estimation known as pixel
MS. For actual experimental data, projection values were used

or RMS known as overall RMS, which can be expressed as:

MS =
√∑N

i=1(Actual − Reconstructed)2∑N
i=1(Reconstructed)2

(13)

lower value of RMS indicates a better agreement between
he reconstruction and actual values. Zero value of RMS is an
deal and a perfect agreement between the measured and recon-
tructed data. Therefore, RMS, below a certain threshold value,
an be used logically as stopping criteria. In iterative methods,
he updating term progresses to unity (in ML algorithm) and
o zero (in ART) and the function gets optimized, which can
lso be used as a pixel level stopping criterion. Such a study
or ML algorithm for emission tomography has been reported
n detail by Kontaxakis and Tzanakos [22] but never applied for
he multiphase systems.

. Experimental procedure

In the present study, a bubble column of 0.2 m diameter hav-
ng specification given in Fig. 2 was used. Fan and parallel beam
onfiguration data were generated by calculating as well as by
ig. 2. Experimental setup. (1) Bubble column; (2) air compressor; (3) air
nlet; (4) liquid inlet; (5) pipe sparger; (6) rotameter; (7) turbine anemome-
er; (8) anemometer display; (9) clear liquid tube; (10) liquid drain; (11) U-tube
anometer; (12) gas chamber; (13) gamma-ray scanning location, H/D = 0.3.
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.1. Linear water attenuation coefficient

A bubble column of 0.2 m diameter was used to obtain the
ater attenuation coefficient under the condition of column
eing filled with only water. Projection data was generated in a
arallel as well as fan beam configuration. For this purpose, the
rojection vector was estimated at each source-detector position.
he projections for reconstruction of distribution of the linear
ater attenuation coefficient can be then given by the equa-

ion proposed by Swift et al. [23], which accounts for scattering
ffects, expressed as:

I

Io
= e−μt + 0.5

(
Dd

Xd

)2

(1 − e−μt) (14)

here Dd and Xd are the detector aperture and the distance of
cattering event from the detector, respectively.

.2. Gas hold-up profile

In this case, an axisymmetric gas hold-up distribution was cal-
ulated in a 0.2 m bubble column using Eq. (15) for radial vari-
tion of fractional gas hold-up, originally proposed by Uyema
nd Miyauchi [24]:

G = (ε̄G − εGW)

(
n + 2

n

) [
1 −

( r

R

)n] + εGW (15)

here r is the radial location, R the radius of column and ε̄G is
he column average gas hold-up. ε̄G was taken as 0.289 (experi-

entally observed by bed expansion) at superficial gas velocity
.19 m/s, εGW is the gas hold-up at wall taken as 0.05 and the
alue of n as 2.6 [25]. Using Eqs. (14) and (15), the calculated
rojection values were used for the reconstruction of the gas
old-up profile.
.3. Gamma-ray tomography experiments

Scanned data was generated by actual gamma-ray scanning
f the Perspex cylindrical bubble column of 0.2 m i.d. and 1.2 m

F
t
g
t

Fig. 3. Gamma-ray scanning system: (S) 1 mCi 137C
ng Journal 130 (2007) 135–145 139

eight as shown in Fig. 2. Perforated plate was used as a sparger
aving 1% free area and 1 mm hole diameter. Superficial gas
elocity was varied in the range of 0–0.19 m/s. Column was
lled with 0.6 m clear liquid height. Gamma-ray scanning sys-

em (Fig. 3) consists of 1 mCi 137Cs gamma source (disc source
f 0.02 m diameter), sodium iodide (NaI) with thallium (Tl) acti-
ated scintillation detectors (BICRON), photo multiplier tube,
pre-amplifier, a multi-channel (eight channels) analyzer, data

cquisition system and related hardware and software. Source
ollimator having a slit, 0.03 m long and 0.003 m in thick-
ess was used. Circular collimators, 0.087 m in diameter, were
sed for detectors and the collimator slit was 0.035 m long and
.004 m in thickness. Numbers of trial runs were conducted with
ifferent combinations of dwell time and number of events. A
well time of roughly 15 s was necessary to satisfactorily cap-
ure the steady state dynamic behavior of flow patterns prevailing
n a bubble column, especially at higher superficial gas veloc-
ty. The two-phase counts were checked with the background
ounts. Based on these preliminary results, the number of events
nd dwell time were fixed at 50 and 15 s, respectively. This gave
eproducibility of measurements within ±2%. The total acqui-
ition time for each source location measurement was 750 s.
estriction on the requirement of a minimum dwell time would
ecessitate a reduction in the number of events, reducing the
otal scan time.

Fan beam configuration was used for reconstruction of the
as hold-up profile. Compton scattering, a phenomenon which
ontributes noise in the GRT measurements became the incom-
ng gamma-ray photons deflects through an angle with respect
o its original direction. Therefore, gamma-ray photon energy
artially or completely gets transferred to electron energy and
esults in a sudden and abrupt change in gamma-ray photons
xistence. The distance between the source and the detector is
ess in fan beam scanning (near wall region) and there is a pos-
ibility to detect the low energy scattered photons by detectors.

or a fan beam scanning, standard counted photons due to scat-

ering was 5% of the total counted photons and this can even
o high (up to 50%) as the distance between source and detec-
or decreases, resulting in more error [4]. For this reason, in the

s gamma source and (D) 1 in. NaI(Tl) detector.
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resent GRT measurements source was kept 0.12 m away from
he center of the column and detectors were placed on an arc
f radius 0.44 m, as shown in Fig. 3. The average fractional gas
old-up in bubble column was estimated from the global bed
xpansion technique as follows:

¯G = HD − HL

HD
(16)

Gas hold-up and water attenuation distribution were recon-
tructed using ART and ML algorithm from the scanned data on
1 × 11 and 22 × 22 grids. In case of parallel beam configuration
PBC), calculations were carried out at 3, 6 and 9 angular views
quiangularly placed over 360◦ and each view having nine pro-
ections (equally spaced at 0.02 m) and 19 projections (equally
paced at 0.01 m). In case of fan beam configuration (FBC), cal-

ulations and measurements were done at 3, 5, 6 and 9 angular
iews equiangularly placed over 360◦ and each view having nine
rojections (equiangular at 6◦) and 17 projections (equiangular
t 3◦). Fig. 4A and B shows the source and detector location

ig. 4. Beam configuration for gamma-ray scanning: (A) parallel beam config-
ration and (B) fan beam configuration.
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or one angular view in parallel and fan beam configuration,
espectively.

. Results and discussions

Projection data obtained in Section 4.1 was used to estimate
he distribution of the linear water attenuation coefficient. Influ-
nce of initial guess on quality of reconstructed distribution of
he linear water attenuation coefficient values has been stud-
ed. The results show that initial guess value does not affect
he computation time, whereas the quality of distribution of the
econstructed linear water attenuation coefficient values changes
ignificantly. Fig. 5A and B shows the distribution of the recon-
tructed linear water attenuation coefficient by ML algorithm
nd ART, respectively. It can be seen from Fig. 5A that about
2%, 81% and 82% pixels have μw value within ±5% error
or initial guess using average back projection (ABP), minimum
rojection method (MPM) and modified back projection (MBP),
espectively. On the other hand, completely reverse trend was
bserved for ART as about 80%, 77% and 76% pixels having
w value within ±5% error for initial guess using ABP, MPM
nd MBP, respectively. The standard deviation values as shown
n Table 1 supports the above observations. Based on these find-

ng, it was desired to use the modified back projection method in

L algorithm and the average back projection method in ART.
t gives better results as compared to the other two methods as
an be seen from Table 1. Here, the value of standard deviation

ig. 5. Distribution of linear water attenuation coefficient in reconstructed image
sing fan beam configuration (17 projections and three views)—initial guess as
arameter. ( ) ABP, average back projection; ( ) MPM, minimum projection
ethod; ( ) MBP, modified back projection. (A) ML–EM algorithm and (B)
RT.
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Table 1
Effect of initial guess value (17 projections and three views in fan beam
configuration)

Initial guess method ML–EM algorithm ART

Mean S.D. Mean S.D.

Average back projection 0.0857 0.0055 0.086 0.0044
M
M

i
f
r

q
u
t
D
r
d
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r
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P
(

Table 2
Effect of beam configuration (19 projections and three views in parallel beam
configuration and 17 projections and three views in fan beam configuration)

Beam configuration ML–EM algorithm ART

Mean S.D. Mean S.D.

F
P

F
s
e
f
c
p
s
i
n
n
t
q
r
c

inimum projection 0.0861 0.0045 0.086 0.0051
odified back projection 0.0861 0.0042 0.086 0.0052

s 0.0042 for MBP in case of ML–EM algorithm and 0.0044
or the case of ABP in ART method. Likhachov et al. [17] have
eported similar observations by using ART method.

Beam configuration and grid size were found to affect the
uality of the distribution of the reconstructed linear water atten-
ation coefficient values because various combinations of these
wo causes a significant variation in the system matrix properties.
istribution of the linear water attenuation coefficient values was

econstructed using both parallel and fan beam configuration
ata to visualize the effect of beam configuration. Distribution
f the linear water attenuation coefficient value in reconstructed
mage is as shown in Fig. 6A and B for ML algorithm and ART,
espectively. It can be seen that all pixels of reconstructed image

y ML algorithm and ART have μw values within ±5% devia-
ion for parallel beam configuration data. Whereas only 82% and
7% pixels have ≤±5% deviation in reconstructed image using

ig. 6. Distribution of linear water attenuation coefficient in reconstructed
mage—beam configuration as parameter. ( ) PBC, parallel beam configuration
nd ( ) FBP, fan beam configuration. [Nineteen projections and three views in
BC and 17 projections and three views in FBC.] (A) ML–EM algorithm and
B) ART.

c
o
m

b
p
s
c
S
u
t
t
P
g
d
F
i
d
r
c
w
s
o
v

T
E
f

G

1
2
4

an beam configuration 0.0861 0.0042 0.086 0.0052
arallel beam configuration 0.0859 0.0015 0.0859 0.0017

BC data by ML algorithm and ART, respectively. Also, lower
tandard deviation value of reconstructed distribution of the lin-
ar water attenuation coefficient using PBC data was observed
or both the reconstruction methods as shown in Table 2. In the
ase where source is placed close to the column, beam overlap-
ing and region of missing data are two commonly encountered
ituations in fan beam configuration gamma-ray scanning, which
s not the case in PBC measurements. This situation leads to the
on-uniformity in system matrix and the addition of statistical
oise in the measured data in case of FBC data. This might be
he probable reason for inaccuracies and distortions of image
uality for FBC. Results show that precise and good quality of
econstructed image can be obtained for parallel beam data as
ompared to the fan beam data. In spite of this, the fan beam
onfigurations have been used extensively in the past because
f the less time consumed as compared to the parallel beam
easurements for same quality.
As the grid size affects the reconstructed image quality, it

ecomes necessary to select a suitable grid size for a given
rojection spacing and configuration. To study the effect of grid
ize on quality of reconstructed image, the water attenuation
oefficient distribution was reconstructed as discussed in
ection 4.1. PBC data (19 projections and three views) was
sed for reconstruction on 11 × 11 grid (having grid size larger
han the ray spacing) and 22 × 22 grid (having grid size equal
o the ray spacing), whereas 19 projections and nine views
BC data was used for reconstruction on 44 × 44 grid (having
rid size smaller than the ray spacing). The reconstructed
istribution of μw by ML algorithm and ART is as shown in
ig. 7A and B, respectively. All the pixels of reconstructed

mage on 11 × 11 and 22 × 22 grid have μw value within ±5%
eviation, whereas, only 11–12% pixels has such accuracy in
econstructed distribution of the linear water attenuation coeffi-
ient values on 44 × 44 grid even though more number of views

ere taken for reconstruction. Table 3 shows the effect of grid

ize in terms of standard deviation of reconstructed distribution
f the linear water attenuation coefficient. Standard deviation
alue and distribution of the linear water attenuation coefficient

able 3
ffect of grid size (19 projections in parallel beam configuration and three views

or 11 × 11 and 22 × 22 grid size, whereas nine views for 44 × 44)

rid size ML–EM algorithm ART

Mean S.D. Mean S.D.

1 × 11 0.0859 0.0015 0.0859 0.0017
2 × 22 0.0860 0.0013 0.0860 0.0015
4 × 44 0.0535 0.0978 0.0529 0.0980
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Fig. 7. Distribution of linear water attenuation coefficient in reconstructed
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Fig. 8. Distribution of percentage error in pixels of reconstructed gas hold-up.
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mage—grid size as parameter. ( ) 11 × 11, ( ) 22 × 22, ( ) 44 × 44 [19 pro-
ections in parallel beam configuration and three views for 11 × 11 and 22 × 22
rid, whereas nine views for 44 × 44 grid]. (A) ML–EM algorithm and (B) ART.

alues shows that the reconstructed image quality is superior in
ase of grid size equal to the ray spacing as compared to other
wo options. In case of grid size smaller than projection spacing,
he non-uniform distribution and missing of information of

ertain elements of system matrix leads to poor quality of
econstructed image. Similar observations were found for the
ase of gas hold-up reconstruction on 11 × 11 and 22 × 22 grid
sing FBC data generated by actual scanning of bubble column.

g
t
u
t

able 4
stimated gas hold-up using different number of projections and views and error with

ixels Projections Views ML–

ε̄G,re

× 9 5

3 0.27
5 0.30
6 0.30
9 0.30

1 × 11 7

3 0.27
5 0.28
6 0.28
9 0.29

1 × 11 9

3 0.28
5 0.28
6 0.29
9 0.28

1 × 11 17
3 0.28
6 0.29
9 0.28

ote: Scanned data reconstructed values shown in parenthesis and measured average
) 11 × 11 and ( ) 22 × 22 (nine projections and five views in fan beam
onfiguration).

ig. 8 shows the distribution of percentage error in each of
he pixels of reconstructed image of gas hold-up distribution.
bout 84% and 77% pixels have ≤±5% error in reconstructed

mage of gas hold-up distribution on 22 × 22 and 11 × 11 grid,
espectively.

Local gas hold-up was reconstructed using FBC data gener-
ted with the help of Eq. (15) to study the effect of number of
rojections and number of views. Results show good agreement
etween the measured and reconstructed average gas hold-up
alues for all combinations of projections and view numbers, as
hown in Table 4. Results also show the influence of total num-
er of projections (either by increasing the no of projection per
iew or no of views itself) on the gas hold-up distribution. From
ig. 9, it can be seen that all sets of projections and views yields
ood quality of reconstructed images and the agreement between

he measured and the reconstructed one-dimensional gas hold-
p profile was found to be good. This observation contradicts
he distribution of % error estimated based on the reconstructed

respect to column average gas hold-up measured by bed expansion technique

EM algorithm ART

co Error (%) ε̄G,reco Error (%)

4 5.12 0.275 4.84
9 (0.192) 6.78 (1.25) 0.305 5.50
6 5.81 0.303 4.78
5 5.50 0.304 5.09

7 4.05 0.278 3.98
2 (0.20) 2.60 (5.41) 0.282 2.39
2 2.53 0.282 2.35
2 1.07 0.292 1.04

2 2.39 0.281 2.87
2 (0.192) 2.39 (1.25) 0.282 2.42
3 1.42 – –
4 1.63 0.285 1.49

3 2.08 0.283 2.18
3 1.25 0.292 1.14
5 1.45 0.282 2.28

gas hold-up for scanned data is 0.189.
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Fig. 11. Distribution of percentage error in pixels of reconstructed gas hold-
ig. 9. Fractional gas hold-up (εG) vs. radial distance (r). (—) Actual; (�)
p × 3v; (�) 9p × 5v; (×) 9p × 6v; (©) 9p × 9v.

D gas hold-up distribution as shown in Fig. 10A and B. Similar
ehavior was observed for all other combination of number of
rojection and views. Results emphasis that it is desired to obtain
inimum five views for a given number of projections to recon-

truct the gas hold-up distribution with acceptable quality and
recision. In reconstructed gas hold-up distribution image, more
han 90% pixels having reconstructed values with ≤±10% error
or more than five views are as shown in Fig. 10A and B. Fig. 10A
nd B also shows that further increasing the no of views (from
to 9 views), it leads to a better quality of gas hold-up distribu-
ion (number of pixels with ≤±10% error increases from 91% to
4%) and it approaches actual distribution. Fig. 11A and B shows
he percent error distribution for reconstructed image using vari-

ig. 10. Distribution of percentage error in pixels of reconstructed gas hold-
p—number of views as parameter. ( ) 3 view, ( ) 5 view, ( ) 6 view and ( )
view (nine projections in fan beam configuration). (A) ML–EM algorithm and

B) ART.
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p—number of projection as parameter. ( ) 5 projection, ( ) 7 projection, ( )
projection and ( ) 17 projection (five views in fan beam configuration). (A)
L–EM algorithm and (B) ART.

us numbers of projections with five views. Similar results were
bserved for other number of views too. Image reconstruction
uality was found to be improved with an increase in the num-
er of projection (number of pixels with ≤±10% error increases
rom 82% to 93% with an increase in number of projection from
to 17). Results also show the level of desired quality and such
precision can be obtained for scanned data (given as bracketed
uantity in Table 4).

The overall stopping criteria was used to terminate the con-
ribution of projection value to the pixels, once the overall RMS
alue for a specific projection reaches the desired threshold
alue. Fig. 12A and B shows the plot of RMS verses number
f iterations for ML algorithm and ART, respectively. The
MS value approaches near zero at number of iterations ≥40
nd ≥500 for ML algorithm and ART, respectively, indicating
he optimum reconstruction image quality (RMS threshold
alue considered here is 0.003). Initially due to high rate of
onvergence, RMS quickly reaches to a certain value, which is
ess than one and it takes more number of iteration to reach the
MS close to the minimum (RMS approach zero). Iteration gets

erminated when the RMS value reaches the desired threshold
imit. Under these circumstances, the pixel updating factor
pproaches unity and zero for the case ML–EM algorithm and
RT, respectively. Fig. 13A and B shows the graph of percent

ixel converged versus number of iterations. This graph gives
better picture of the exact number of iterations for a desired

onvergence of pixels. For example, to achieve 96% pixels to be
onverged with the desired threshold limit, ML–EM algorithm
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ig. 12. Overall RMS values vs. number of iterations: (A) ML–EM algorithm
nd (B) ART.

equires approximately 110 iteration, whereas this number is
ore than 700 in case of ART. Based on these above findings, it
s recommended to use this pixel level stopping criteria for both
he methods, however, ML algorithm requires lesser number of
teration and it gives a better quality.

ig. 13. Percent of pixels converged vs. number of iterations: (A) ML–EM
lgorithm and (B) ART.
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. Conclusions

Both ART and ML–EM algorithm provide the reconstruction
of gas hold-up and the water attenuation coefficient using par-
allel beam as well as fan beam configuration data. However,
ART needs very large number of iterations as compared to
ML–EM algorithm. For the same quality of the reconstructed
image, ART requires more than 8–9 times iterations as com-
pared to ML–EM algorithm.
Although, ML reconstruction is faster, it may deteriorate if
proper iteration stopping criteria is not used.
Initial guess has moderate effect on reconstructed image qual-
ity. The average back projection method was found to be better
for ART, whereas the modified back projection method exem-
plifies ML–EM algorithm.
It is recommended to select the grid size equal to or greater
than the projection spacing for obtaining a better quality of
reconstructed image.
The effect of grid size becomes less significant as the num-
ber of projections increases. Also, it is necessary to have
minimum five views for better reconstructed gas hold-up dis-
tribution profile.
It is highly recommended to use pixel-based stopping criteria
instead of overall RMS value to get the desired quality of
reconstructed image.
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